Demystifying the Path from 5G to sub-TeraHz 6G

Girish Baliga

DEC 2022

Wireless Knowledge Summit 2022

- Opening Up Millimeter Wave Spectrum and Challenges
- Emerging 60 GHz, 71-76 GHz and 81-86 GHz Millimeter Wave Frequency Bands
- Moving beyond 110 GHz into 6G
- Simulation Case Study
- Summary and Additional Resources

Today: Enabling Next-Generation Broadband Access

TODAY'S CHALLENGING APPLICATIONS

اااا	Complex Modulations
------	------------------------

<u>5G</u>

SatComm

802.11ay

OFDM 256 QAM OFDM 256 APSK Single-Carrier 64 QAM

Wider Bandwidth

100/400 MHz 1.2 GHz (CA)

0.5-3 GHz

4-8 GHz

Higher Frequencies

FR1: < 7.125 GHz FR2: 24 - 52 GHz Ka Band V Band

57-71 GHz

Phased array antenna MIMO FR1: 8x8

MIMO FR2: 2x2

Phased array antenna

Phased array antenna MIMO

Higher Frequencies = Wider Bandwidth?

SO HOW WIDE DO YOU GO?

- Opening Up Millimeter Wave Spectrum and Challenges
- Emerging 60 GHz, 71-76 GHz and 81-86 GHz Millimeter Wave Frequency Bands
- Moving beyond 110 GHz into 6G
- Simulation Case Study
- Summary and Additional Resources

Example of an Emerging Standard: 802.11ay PHY

	802.11ad	802.11ay
PHY Modes	• SC QAM, 2.16GHz, up to 8 Gbps	SC QAM, 4.32 GHzOFDM (optional)
Channelization	 2.16GHz/channel No channel bonding/aggregation 	 2.16, 4.32, 6.48 (optional), 8.64GHz (optional) Channel aggregation (optional): 2.16+2.16GHz, 4.32+4.32GHz
Beamforming/steering	 Supports multiple antennas, one at a time Single stream 	 MIMO (optional) Multiple streams Multiple transmit chains Multiple antennas Downlink Multi-user (optional)

802.11ay Measurement Setup: 4.32 GHz BW @ 61.56 GHz

UXR Wideband mmWave Measurements

UXR 16 QAM MEASUREMENTS IN THE 60, 70, AND 80 GHZ FREQUENCY BANDS

	1 GHz SR (OBW= 1.22 GHz)	2 GHz SR (OBW= 2.44 GHz)	3 GHz SR (OBW=3.66 GHz)	4 GHz SR (OBW=4.88 GHz)
UXR 61.56 GHz	1.18%	1.28%	1.48%	1.71%
UXR 73.5 GHz	1.36%	1.57 %	1.79 %	2.08%
UXR 83.5 GHz	1.45%	1.86 %	2.15%	2.45%

Used VDI Compact V-Band Upconverter, V-Band Amp, 57.2-65.9 GHz Bandpass Filter for 61.56 GHz Measurements

Used VDI Compact E-Band Upconverter, E-Band Amp, 71-76 GHz Bandpass Filter for 73.5 GHz Measurements

Used VDI Compact E-Band Upconverter, E-Band Amp, 81-86 GHz Bandpass Filter for 83.5 GHz Measurements

UXA and Digitizers – Comparison of mmWave Capabilities

EVM PERFORMANCE WITH DIFFERENT EXTERNAL DIGITIZERS

61.56 GHz downconverted to 5 GHz IF; IF digitized with various Keysight digitizers and oscilloscopes

Direct UXR measurement at 61.56 GHz (no downconversion)

- Opening Up Millimeter Wave Spectrum and Challenges
- Emerging 60 GHz, 71-76 GHz and 81-86 GHz Millimeter Wave Frequency Bands
- Moving beyond 110 GHz into 6G
- Simulation Case Study
- Summary and Additional Resources

6G Wireless

WHAT IT MEANS FOR SIMULATION, DESIGN, TEST & MEASUREMENT

>1 Tbps/user

- Simulate/Design/Measure Sub THz RF
- Baseband: extreme-speed, real-time
- Extreme-speed interconnect (board-to-board)
- Optical WiFi Communications
- Optical Networks: beyond 800G

Complex Radio Systems Design & Testing

- Heterogeneous: WiFi, Cellular, FR1+FR2+FRN
- Test in simultaneous modes
- Design/simulate complex systems
- Extreme power efficiency

E2E Network Design, Validation, Optimization

- QoS (quantitative) Validate SLA
- QoE (qualitative) Validate SLA
- Security All facets

Physical Measurements!

Complex System Interaction

System ←→ Society Interaction

Tomorrow: Enabling Next-Generation Broadband Access

TOMORROW'S CHALLENGING APPLICATIONS

		5 G	SatComm	802.11ay	6G ??
ıllılıı	Complex Modulations	OFDM 256 QAM	OFDM 256 APSK	Single-Carrier 64 QAM	Single-Carrier? OFDM? Others?
	Wider Bandwidth	100/400 MHz 1.2 GHz (CA)	0.5-3 GHz	4-8 GHz	>10 GHz?
-\\\^_	Higher Frequencies	FR1: <7.125 GHz FR2: 24 - 52 GHz	Ka Band V Band	57-71 GHz	Sub-THz, THz?
	Multiple Antennas Techniques	Phased array antenna MIMO FR1: 8x8	Phased array antenna	Phased array antenna MIMO	Phased array antenna? MIMO ? Others?

- Opening Up Millimeter Wave Spectrum and Challenges
- Emerging 60 GHz, 71-76 GHz and 81-86 GHz Millimeter Wave Frequency Bands
- Moving beyond 110 GHz into 6G
- Simulation Case Study
- Summary and Additional Resources

KEY CONSIDERATIONS

- Optimizing Signal-to-Noise Ratio (SNR)
- Minimizing Phase Noise
- Addressing Linear and Nonlinear Impairments
- Making a Waveform Selection

SIMULATION CASE STUDY

SIMULATION CASE STUDY

√ Phase Noise

EVM = 4.07%

Simulated Using dBc/Hz from Phase Noise Profile in Previous Slide

Increased Phase Noise by 10 dBc/Hz for Higher Frequency Offsets

SIMULATION CASE STUDY

SIMULATION CASE STUDY

- √ Phase Noise
- ✓ Linear Impairments
- ✓ Nonlinear Impairments

- Opening Up Millimeter Wave Spectrum and Challenges
- Emerging 60 GHz, 71-76 GHz and 81-86 GHz Millimeter Wave Frequency Bands
- Moving beyond 110 GHz into 6G
- Simulation Case Study
- Summary and Additional Resources

Summary

- R&D testbed offer flexibility and scalability for emerging millimeter wave applications
- Testbed was applied to 802.11ay as an example of an emerging millimeter wave application
- Demonstrated performance achievable in the 60, 70, and 80 GHz frequency bands
- Early 6G research is already underway
- Discussed key considerations for sub-terahertz systems

Additional Resources

R&D Testbed Whitepaper

6G Sub-THz Testbed Whitepaper

